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ABSTRACT

As environmental DNA (eDNA) studies have grown in popularity for use in ecological applications, it has become

clear that their results differ in significant ways from those of traditional, non-PCR-based surveys. In general, eDNA

studies that rely on amplicon sequencing may detect hundreds of species present in a sampled environment, but

the resulting species composition can be idiosyncratic, reflecting species’ true biomass abundances poorly or not

at all. Here, we use a set of simulations to develop a mechanistic understanding of the processes leading to the

kinds of results common in mixed-template PCR-based (metabarcoding) studies. In particular, we focus on the

effects of PCR cycle number and primer amplification efficiency on the results of diversity metrics in sequencing

studies. We then show that proportional indices of amplicon reads capture trends in taxon biomass with high

accuracy, particularly where amplification efficiency is high (median correlation up to 0.97). Our results explain

much of the observed behavior of PCR-based studies, and lead to recommendations for best practices in the field.

1 Introduction1

Surveying the natural world by amplifying and sequencing DNA from environmental sources such as water, air, or2

soil has long been commonplace in microbial ecology [1, 2, 3] , but has recently become popular for characterizing3

ecological communities of eukaryotes [4, 5, 6, 7, 8, 9]. Because the source of samples is the environment itself rather4

than specific target organisms, the data resulting from such studies have become known as environmental DNA5

(eDNA) [8]; the ultimate source of genetic material in the environment may be living or waste cells or extracellular6

DNA [8]. Techniques that take advantage of such data may include non-PCR-based methods such as hybridization,7

but generally include an amplification step such as quantitative PCR, digital-droplet PCR, or traditional PCR from8

mixed templates followed by high-throughput sequencing. This last technique is known as metabarcoding, eDNA9

amplicon-sequencing, or more generally, marker-gene analysis.10



Patterns of diversity have been a focus of metabarcoding studies [10, 11], but in many cases, results from11

eDNA sequencing may differ substantively from results from traditional, non-PCR-based biodiversity surveys12

[12, 13, 14, 15]. To evaluate metabarcoding as a tool for assessing biodiversity, we provide a mechanistic, simulation-13

based approach to understanding the processes that lead ultimately to metabarcoding data.14

Ecological inquiry often begins with uncovering patterns of biodiversity, yet sampling biodiversity is inherently15

difficult and the methods highly varied. Methods for surveys of fish diversity differ fundamentally from surveys of16

birds or trees. Every way of surveying the world has a different set of processes intervening between the sampled17

phenomenon (say, the number of different types of snails on a rock) and the recorded observation (the number of18

snails recorded, trapped, or otherwise counted). The reason that different survey techniques offer different results19

and insights – even for the same survey target – is because these intervening processes differ between techniques.20

Some methods have only trivial intervening processes: counts of snails on a rock are subject to ascertainment bias21

and sampling error, but we expect these counts to be reasonably direct reflections of the “truth” that exists in the22

world. Environmental DNA provides the potential for standardizing of sampling among disparate species groups –23

for example, a single sampled bottle of ocean water can be used to survey fish, plankton, benthic invertebrates and24

mammals. However, producing biodiversity estimates from eDNA sequences requires complex laboratory processes25

– from collection to extraction through amplification and sequencing – that may substantially affect estimates of26

biodiversity derived from eDNA.27

Specifically, eDNA methods often use PCR, which causes two key differences from other sampling methods.28

First, PCR exponentially increases the very low concentrations of DNA collected in the environment to make29

amounts sufficient for further analysis. This exponential process means that stochasticity and small biases in the PCR30

process can lead to large differences the abundance of each species’ amplicons relative to DNA concentrations in the31

field [16, 17, 18]. The issues surrounding amplification bias in mixed-template PCRs have long been documented32

[19, 20], and in the metabarcoding context have recently come under useful scrutiny [21, 22, 23]. Compounding the33

bias problem is a crucial second difference between PCR-based methods and others: DNA from different species34

often amplifies at different rates, such that each PCR cycle preferentially amplifies templates with greater affinity35

for the primers being used (i.e., amplification bias) [24, 25]. Furthermore, in contrast to many traditional sampling36

techniques, metabarcoding datasets are compositional [26]: their information content has an “arbitrary total imposed37

by the instrument” [26], which necessarily means amplicon counts are not directly related to counts of template38

molecules in the sampled environment. Many PCR-based analyses of ecological communities gloss over potential39

biases that arise from using genetic methodologies, and few attempt to quantify either the degree of this bias or its40

effects on study results. However, understanding the results of metabarcoding surveys requires that we understand41
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how these processes influence estimates of diversity and other survey outcomes.42

Here, we briefly review the processes involved in metabarcoding surveys. We then simulate sets of biological43

communities and subject them to simulated PCR-based processing. We independently vary the important axes44

of variation for eDNA surveys – specifically the number of PCR cycles and the distribution of taxon-specific45

amplification efficiencies – to illustrate the effects of these parameters on estimates of biodiversity. We base these46

simulations on real-world use-cases, parameterizing our models using empirical data where possible. We then47

evaluate the quantitative performance of taxon-specific amplicon-abundance indices vs. biomass in simulations,48

finding that proportional indices of eDNA reads capture trends in taxon biomass with high accuracy, particularly49

where amplification efficiency is high. Our results explain much of the observed behavior of PCR-based studies, and50

lead to recommendations for best practices in the field.51

2 Methods52

Major Processes Involved in Metabarcoding53

At least five major processes drive patterns of metabarcoding data and affect estimates of biodiversity. Genetic54

material sampled from an environment derives from some living species (process 1). For single-celled species, an55

organism and its representative genome are coincident, while for multicellular species the sampled DNA may derive56

from a residual or waste cell (or a gamete) in the environment. DNA presence in the environment – having been57

created by the source organism and not yet degraded or lost – is then the first process with which we are concerned.58

In either the single- or multicellular case, the time-averaged DNA shed into the environment is proportional to the59

biomass of a given species, although the proportionality constant may vary between species. This DNA degrades60

rapidly in ambient conditions [27, 28] and may be transported away from the source organism [29, 30], taken up61

by other organisms via transformation [31], or adsorbed onto soil or other substrates [32]; these mechanisms may62

be treated together as forms of effective eDNA loss. For a fixed population in a closed area, we hypothesize the63

observable DNA concentration will be an equilibrium between the generation and loss functions; our simulations64

assume equilibrium in order to model eDNA template concentration as a point estimate.65

This DNA is then sampled by a researcher (process 2), extracted and purified from its surrounding cellular66

matrix (process 3), and subject to PCR amplification (process 4). This amplification step is of special importance,67

since it is what most obviously distinguishes genetic sampling methods from traditional ecological sampling. In68

some applications, a sample is subjected to multiple PCR processes, but at minimum, the amplicons are sequenced69

(process 5) before bioinformatic analysis. Because these (minimum) five processes occur in series, random and70
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systematic errors at one step propagate through the analytical chain [33]. It is therefore important to understand each71

process individually so that we can estimate their cumulative effects on measures of diversity.72

Defining the target community is an important a priori component of all studies of biodiversity. While this73

is widely appreciated in the ecological literature, it is often overlooked in metabarcoding studies. For example,74

ecologists might study the biodiversity of forest trees [34] or coral reef fish [35] or sessile invertebrates [36]. In75

the metabarcoding context, very specific primer sets targeting a relatively small number of taxa (e.g., vertebrates76

[37, 38]) may have a well-defined target group, but nevertheless the absence of a taxon from a sequenced sample77

does not indicate the absence of that taxon from the environment. Instead, the unsampled species simply may not78

have been susceptible to that set of PCR primers, and so failed to amplify. The result is often a dataset that represents79

many taxa, but these taxa are an unknown fraction of a larger (and perhaps spatially or taxonomically undefined) pool80

of species present. Here, for clarity of illustration, we treat the 1000 simulated species as the eukaryotic community81

of a nearshore marine habitat, but we note these simulations are broadly applicable to most ecosystems in which82

PCR-based studies occur.83

Community Simulations84

To test the effect of eDNA processing on estimates of abundance and biodiversity, we simulated biological communi-85

ties and performed simulations of metabarcoding processes on each, as described below.86

Biomass in the environment (process 1): We generate three different distributions of biomass pro-

portions to test for an effect of these underlying community distributions on metabarcoding diversity

estimates (Figure 1). Let Bi be the proportional biomass of species i, for i = 1, ...,N species such that

∑
N
i Bi = 1. First, we simulate a community in which all species have identical proportional biomass,

Bi =
1
N

(1)

and refer to this as our “uniform” community. The two other communities are defined using a symmetric

Dirichlet distribution to describe communities with variation in biomass among species,

Bi ∼ Dirichlet(γ) (2)

We define γ = 5 for one community and γ = 1 for the second; smaller values of γ correspond to more87

variation among species in proportional biomass. Across all three of these community distributions,88
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the number of species is consistent, as is the expected proportion of each species (i.e., the mean).89

These characteristics facilitate comparisons across distributions by reducing the differences under90

consideration to one dimension. We note in particular that in using proportional (rather than absolute)91

biomass, we can flexibly capture changes in community structure appropriate to those that genetic92

assays likely respond to: because PCR is a competitive reaction among template molecules, absolute93

biomass (and hence absolute DNA concentrations) are less relevant than their proportions in the sampled94

community. We simulate 100 independent communities of 1000 taxa for each community biomass95

distribution.96

Genetic Material in the Environment (eDNA, process 2). We assume that organisms shed DNA into

the environment, Di, as a function of the biomass of species i times the shedding rate of that species,

si. While loss of DNA from the environment plays a vital role determining the equilibrium DNA

concentration in the environment, we assume that loss of eDNA from the environment is constant

among species, and therefore equilibrium DNA concentration is proportional to DNA shedding. Here,

we inform our shedding rate parameters using Sassoubre et al. 2016 [28], which found shedding rates

(in pg/hour) among three Pacific fishes to vary by two orders of magnitude; accordingly we sample

simulated shedding rates from a distribution with wide variance and a moderate central tendency.

Di = Bisi (3)

si ∼ LogNormal(0.5,0.5) (4)

We note that this simulation is spatially inexplicit, and so the statistical distributions of biomass and97

eDNA are not intended to reflect a particular spatial distribution.98

DNA Collection and Extraction (process 3). We assume DNA is collected in proportion to its99

abundance in the environment and extracted with equal efficiency from all species present.100

DNA Amplification during PCR (process 4). Because each taxon (or, more broadly, template101

molecule) has its own amplification efficiency for a given set of primers, we describe three simu-102

lations according to the distribution of these efficiency parameters among the taxa in a community103

(Figure 2). We treat biases arising from sequence variation or from secondary structure (“polymerase104
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bias”; see e.g., [39]) as equivalent for the present purposes. For all scenarios, we use the same relation-105

ship for translating among-taxon variation in amplification efficiency into the number of amplicons106

observed for taxon i, Ai, at the conclusion of the PCR. Let ai be the binding affinity for the PCR primers107

to species i, and NPCR be the number of PCR cycles, then108

Ai = Di(ai +1)NPCRε (5)

with ε representing a multiplicative process error term which adds a small amount of stochasticity to the109

observed amplicons for each species. We model ε as a lognormal distribution, ε ∼ LogNormal(µ,σ2)110

with µ = 0 and σ = 0.05.111

Key parameters governing the observed number of amplicons from a given eDNA sample are the DNA112

concentration, Di, and the amplification efficiency for each species, ai. For a given eDNA sample, Di is113

constant, so we focus on three distributions of amplification efficiencies corresponding to biological114

use-cases. For each case, we model the amplification efficiency for each species as a draw from a beta115

distribution,116

ai ∼ Beta(α,β ) (6)

or as a mixture of two Beta distributions,117

ai ∼
(
π1Beta(α1,β1)+(1−π1)Beta(α2,β2)

)
(7)

Where π1 is the weight for the first mixture component and so 0 < π1 < 1.118

We use a mixture of only two distributions, but future work could consider mixtures with larger119

number of component distributions (for example, where different taxonomic groups make up different120

components of the mixture). The parameter ai is equivalent to the measure of amplification efficiency,121

E that is often reported for an individual species in qPCR studies [40].122
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Any primer set will be evaluated relative to its intended target set of taxa. Put differently, the way we123

think about primer efficiency depends strongly upon taxonomic scale. Primers designed to amplify124

vertebrates exclusively might behave very well (i.e., have relative amplification efficiencies clustered125

around one) within Vertebrata, but across the tree of life, vertebrates are a vanishingly small fraction of126

biodiversity. Accordingly, at the scale of the tree of life, these same primers would have efficiencies127

clustered near zero (they do not amplify most lifeforms at all) with a small proportion of target molecules128

(vertebrate species) amplifying quite well. For simplicity and ease of comparison, we evaluate our129

simulated primers on a common taxonomic scale, Eukaryota.130

We drew empirical data from published metabarcoding papers to parameterize our models, finding131

several recent papers [41, 4, 11, 42, 43, 39] that reported results from mock (i.e., synthetic) eDNA132

communities useful for our purposes. These papers provided the number of PCR cycles used, the133

starting concentrations of DNA for a variety of taxa, the primers used, and the ending counts of amplicon134

reads; such data allowed us to calculate taxon-specific amplification efficiencies for each primer set135

(Supp. Table 1). We estimated the parameters for a univariate beta distribution to the observations for136

each primer, and used the beta parameters to inform our simulations (see below; Figure 2).137

Case A: Amplifies Most Taxa, but Few Very Well or Very Poorly For eukaryotes, several primers have138

been widely used in metabarcoding studies because they amplify eukaryotic taxa across many domains139

of life (Leray COI primers [44] or the Stoeck 18S primers [45]). It is not yet clear what the distribution140

of amplification efficiencies is for these primers across Eukaryota, but given the breadth of observed141

taxonomic coverage (e.g., [46, 12]) here we model these efficiencies using a beta distribution (α = 5,142

β = 5), with a mean of 0.5 and a standard deviation of 0.15.143

Case B: Amplifies Few Taxa Well, Most Taxa Poorly. If we envision the sampled community as being144

made up of one thousand eukaryotic species, the primers developed for broad-spectrum use and widely145

useful for population genetics are likely to have a right-skewed distribution when viewed at the scale146

of Eukaryota. We model this as a beta distribution (α = 0.5, β = 1.5) with mean 0.25 and standard147

deviation 0.26. For example, metazoan 16S primers developed in Kelly et al. 2016 [47] amplify very148

poorly the single-celled photosynthesizers that comprise the majority of eukaryotic DNA in marine149

environments. Instead, this primer set amplifies animal DNA well and almost exclusively; the result150

will be a right-skewed distribution (i.e., a mode near zero with a long tail in the positive direction) at the151

scale of Eukaryota.152
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Case C: Amplifies a single taxonomic group well, most taxa poorly or not at all The third use-case is153

analogous to specialized primers used in taxon-specific metabarcoding studies, such as those targeting154

vertebrates specifically [37, 4, 48, 38]. These target a narrow range of species for a particular survey155

purpose, and consequently amplify a very small fraction of eukaryotic life present in most environments.156

For the marine environment, we envision a primer that amplifies vertebrate species (e.g., fish and marine157

mammals) well but amplifies non-vertebrate taxa little or not at all. We note that qPCR primers are158

an extreme case of this distribution, in which the primer set exclusively amplifies a single taxon. We159

model this as a mixture of two distributions: one for the target taxon, and one for other eukaryotes160

present in the environment. Using parameters derived from [41] (see Supplementary Table 1), we model161

the target-taxon component as a Beta distribution (α = 2.1, β = 0.58; 10% of the taxa present), and162

non-target component as Beta (α = 0.01, β = 10; 90% of the taxa present).163

DNA Sequencing (process 5). Finally, the number of sequencing reads for species i, Yi, is proportional164

to Ai. The resulting community of eDNA reads is a Multinomial sample of between 105 and 106
165

reads out of a total of 107 reads – the size of an average Illumina MiSeq run – from the community of166

amplicons present. The result is a set of replicate samples that varies in read-depth, consistent with167

common outcomes of MiSeq (and similar) sequencing runs.168

Psamp ∼ Beta(30,30) Y ∼ Multinomial
( A

ΣiAi
,Psamp ×106

)
(8)

where Y is a vector containing the observed amplicon counts for the 1000 species.169

Analyses of Simulations170

We used the simulation results for eDNA to understand the characteristics of eDNA data with respect to two171

important areas of ecological research: estimating biodiversity and providing quantitative estimates of abundance.172

For both diversity and abundance investigations, we compare estimates across our three simulated community173

biomass distributions and the three amplification cases at standardized endpoint of 35 PCR cycles. All of the above174

simulations and calculations were carried out in R ver 3.5.1 [49] most prominently using packages tidyverse [50]175

and vegan [51]; all code and related data are available as supplementary material and at https://github.com/176

invertdna/eDNA_Process_Simulations.177
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Biodiversity178

Effect of PCR Cycle-Number on Sequence Diversity179

We examined the effect of the numbers of PCR cycles under three primer efficiency scenarios (Cases A, B, and C180

above) on over 100 communities of 1000 taxa each, with biomass distributed according to our moderately variable181

scenario (γ = 5). We sampled each community at 5-cycle intervals from 5 to 50 PCR cycles. We estimated sequence182

diversity using two of the most commonly used metrics of biodiversity, species richness and Shannon diversity.183

Richness is simply the number of unique taxa identified in the eDNA results, whereas Shannon takes into account184

both the number of unique taxa as well as their relative frequency.185

We note that there is a very large literature examining the measurement and partitioning of diversity [52, 53, 54],186

and that many different indices have been used to capture the diversity of a community. We include only richness187

and Shannon diversity here because they are commonly used and they aptly illustrate the issues that arise from using188

metabarcoding data for studies of biodiversity.189

Effect of Amplification Bias and Underlying Biomass on Sequence Diversity190

To test for the effect of among-taxon amplification bias, we compared biodiversity estimates derived from the three191

amplification efficiency cases described above and for the three biomass distributions (uniform, low variability,192

high variability). Each taxon (or equivalently, each unique template molecule) was assigned a fixed amplification193

efficiency drawn from the case-specific amplification distribution. For all simulations, we compare results after 35194

PCR cycles for 100 replicate simulated communities of 1000 taxa each.195

Quantifying Biomass with Metabarcoding196

An aspirational use of eDNA technology is to determine the abundance or biomass of particular species [18, 55,197

56, 57, 58]. While research using qPCR or ddPCR technology suggests using single species genetic approaches198

can yield quantitative estimates of abundance [59, 60, 61], the relationship between amplicon sequence counts and199

organismal abundance is not straightforward. In particular, single metabarcoded samples in space or time tell us200

little about the underlying biomass of surveyed organisms, because the amplification efficiencies of each taxon are201

generally unknown. However, indices of amplicon abundance – reflecting temporal or spatial trends in taxon-specific202

amplicon abundance – have mirrored biomass in practice [4].203

We expect each taxon to have a different amplification efficiency for a given set of PCR primers and therefore204

expect a poor correlation between eDNA amplicon abundance and biomass abundance when analyzing a dataset of205

many taxa in a single sample. However, we investigate whether a temporal series of samples can solve this problem;206

if we assume that amplification efficiency is solely a product of primer-template interaction (and is thus independent207
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of community composition), amplification efficiency remains constant within a taxon across samples. We can then208

express DNA abundance for each species at each time point as using several alternative metrics (described below)209

and ask which metrics are likely to be useful for describing the biomass of individual species.210

Importantly, this approach relies on the assumption that we need not know a taxon’s efficiency in absolute terms;211

only that it remains constant across samples. This assumption holds true at least for suites of samples containing212

identical sets of taxa at different concentrations [4] or samples containing varying subsets of taxa drawn from a213

common pool [41]. These references show nearly identical within-taxon amplification efficiencies derived from214

different starting communities: R2 = 0.98 (p = 10−8, N = 2 communities of 10 fish species at different concentrations215

using 12s primers; [4]), and median R2 = 0.94 and 0.91 (p < 0.01, N = 10 communities of subsets of six fish216

species drawn from a pool of 10; 12s primers and Cytochrome B primers, respectively; [41]). See Supplementary217

Information for calculations.218

To test the quantitative relationship between biomass and various amplicon-abundance indices, we conducted219

the simulations described above for 25 time points (spatial points are conceptually equivalent). For each timepoint,220

we assumed each species randomly varied around a stable abundance and drew a proportional biomass for each221

species from a symmetric Dirichlet distribution (γ = 5) as described above. We then simulated amplifications of222

each of these communities with a single primer set (Case A, symmetrical) after 35 PCR cycles. To evaluate the223

performance of a variety of amplicon-based indices, we correlated the biomass of each taxon (N = 1000 in total224

simulated community, not all of which amplify with the selected primer set) at each time-point (N = 25) against225

eDNA abundance metrics, reporting the distribution of correlation coefficients (Spearman’s ρ) as a summary measure226

of each index’s quantitative relationship to biomass. We compared each of these to a null distribution derived by227

randomizing the eDNA amplicon matrix (such that median ρ ≈ 0).228

Because it is unclear which amplicon summary statistics should be most useful to explain the relationship with229

biomass, we evaluated a range of indices of amplicon abundance (numbered directly below) against the species230

specific proportion biomass over the 25 time points. For each equation below, i indexes species and j indexes sample.231

1. Raw amplicon read-counts232

2. An index of read-count proportions, scaled 0 to 1 (”eDNA Index”; as used in [4]). Note this is a linear correlate

of the χ2 transformation in [62], of amplicon proportions within a sample, and of the geometric-mean-based

adjustment in DESeq2 [63], and so those are not included here. It is also identical to the “Wisconsin double-

standardization”, as implemented in vegan [51], with appropriate margins specified. All behave identically.
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eDNAi j =

Yi j

ΣiYi

max j(
Yi j

ΣiYi
)

(9)

3. Amplicon frequency within a sample, Freq, calculated such that the average of non-zero taxa is 1 (method

“frequency” in the vegan function “decostand” [51, 64])

Freqi j =
Yi j

ΣiYi
N j (10)

4. Normalized amplicon counts (sample sum-of-squares equal to one)

NCountsi j =
Yi j√
ΣiY 2

i

(11)

5. Rank order of amplicon abundance, excluding zeros233

6. Hellinger distance, a scaled square-root transformation of read counts as defined in [62] and implemented in234

[51]235

7. log2(x)+1 for values > 0, as implemented in vegan function “decostand”, method “log” [51]236

Having measured the performance of these indices by their correlations with simulated taxon biomass, we237

then decomposed these results to measure the effect of amplicon abundance and amplification efficiency on index238

performance.239

3 Results240

3.1 Diversity Results241

Effect of PCR Cycles242

Our eDNA metabarcoding simulations reveal a strong effect of the number of PCR cycles on estimates of biodiversity243

(Figure 3A). Increasing the number of PCR cycles decreased both richness and Shannon diversity, but the shape and244

severity of this decline depended upon the distribution of amplification efficiencies.245

The simulated primer set efficiently amplifying the fewest taxa (Case C) experienced the greatest decline in246

richness, with a median of only 88 out of 1000 taxa present detected after 20 cycles (N = 100 simulations). This247

11/29



fraction detected mirrors the proportion of taxa amplified with a relative efficiency of greater than approximately 0.6248

in the underlying distribution of amplification efficiencies (0.088). By contrast, a primer set that readily amplifies249

most target taxa (here, Case A, with 63% of the taxa amplifying at efficiency 0.6 or better) predictably recovered the250

greatest richness, with 973 out of 1000 taxa (median, N = 100) recovered after 20 cycles, and 650 after 40 cycles.251

Shannon Index values showed similar trends (Figure 3B).252

Diversity metrics change rapidly with increasing cycle numbers; for example, estimated richness might fall by253

half or more between cycle 30 and cycle 40 as in Case B. Such dramatic changes with small analytical differences254

have two immediate implications: the importance of maintaining consistent procedures within a project (such that255

results are comparable among samples), and the difficulty of comparing results across datasets generated with even256

subtly different methods. Furthermore, given that the proportions of eDNA reads are only poorly correlated with the257

proportions of biomass in most cases (see Results below), the absolute magnitudes of the Shannon Index and similar258

traditional summary statistics – which depend upon the proportions of each taxon in a community – likely have little259

meaning in metabarcoding studies.260

Case C highlights a notable exception to this idea: a taxon-specific primer, amplifying a small fraction of the261

total species present, appears stably reflect the richness of the target amplified group after the first few PCR cycles262

(Figure 3A).263

The species-accumulation curves reflect the substantial effect of PCR cycle number of detected richness (Figure264

4). These curves illustrate that diversity measures depending upon the slope of species accumulation are themselves265

strongly influenced by the number of PCR cycles.266

Effect of Amplification Bias267

Holding the number of PCR cycles constant – here, for illustration, at 35 cycles – different primer sets yield radically268

different estimates of diversity in the same simulated communities (Figure 5). More narrowly targeted primer sets269

predictably reflect lower richness. These findings are consistent with other simulations ([23]) and with empirical270

results (e.g., [12]), and underscore the broader finding that different primer sets reveal different suites of taxa from a271

given environment.272

Notably, primer sets performed similarly across quite different distributions of underlying biomass (Figure 5).273

We can apportion the variance in results attributable to differences in underlying biomass vs. primer-amplification274

efficiency, keeping the distribution of shedding rates constant, to examine the effects of each. Primer set accounted275

for more than 99% of the variation in richness, with biomass distribution accounting for far less than 1% (ANOVA;276

R2 = 0.996 and 0.0016, p < 10−16 for each). Biomass had a greater influence on Shannon indices, although primer277
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set remained the dominant source of variance (ANOVA; R2 = 0.865 and 0.118, p < 10−16 for each). These results278

suggest that metabarcoding results are quite robust to different underlying distributions of biomass, which may or279

may not be an advantage of the sampling technique, depending on the aims of a particular study.280

The probability of detecting any taxon therefore depends upon its amplification efficiency for a given set of281

primers, and to a much lesser extent, the underlying distribution of biomass or shedding rate (Figure 6). For taxa at a282

particular amplification efficiency, higher-variance community biomass distributions may lead to higher variance283

in detectability among taxa. For example, within the median (i.e., fifth) decile bin of amplification efficiency, the284

variance in likelihood of detection ranged over two orders of magnitude, from 10−4 (uniform biomass) to 10−3
285

(moderately variable biomass distribution) to 10−2 (more-variable biomass distribution). In sum, communities with286

greater variability in biomass of target taxa are likely to yield somewhat noisier eDNA datasets, but the qualitative287

trends appear approximately constant across different biomass distributions.288

Quantitative eDNA Indices289

Within a given community sample (representing a single timepoint, or equivalently, a single point in space), biomass290

is only modestly correlated with eDNA abundance (Figure 7; grey vertical lines; median ρ = 0.12 - 0.495, biomass291

vs. different eDNA-abundance indices).292

When we used the replicate sampling of species across all 25 timepoints, however, many of the indices of293

eDNA-derived taxon abundance were highly correlated with true biomass (Figure 7). In particular, the index of294

eDNA-read proportions (“eDNA index”) behaved particularly well, with a median ρ of 0.87, and a mode 0.97.295

For ease of understanding, the eDNA Index is a double-transformation: first, converting amplicon read-counts to296

proportions (within a sample), and second, scaling the resulting proportions of each read-variant (or OTU, taxon, etc)297

to the largest observed proportion (across samples) for that read-variant. Various other indices also reliably tracked298

biomass (Figure 7). All indices perform significantly better than the null expectation derived from the permutation299

test (Kolmogorov-Smirnoff test, p < 10−16). This result suggests metabarcoding studies can indeed reveal detailed300

information on the abundance of individual taxa.301

Taxa with greater amplicon abundances tended to better reflect biomass across all indices investigated (Figure 7,302

darker shades). For example, for taxa in the first (lowest) quartile of log read abundance, the median eDNA index -303

biomass ρ is 0.4; this rises to ρ = 0.77, 0.93, and 0.97 for the second, third, and fourth quartiles respectively. This304

pattern is likely a function of greater statistical power to detect trends among more-common amplicons, because rare305

taxa are subject to much greater proportional sampling error.306

Moreover, because amplicon abundance depends primarily upon amplification efficiency rather than biomass,307
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the eDNA index almost precisely (median ρ = 0.96) tracked taxa with a relative amplification efficiency of greater308

than approximately 0.6 – regardless of whether their underlying biomass was common or rare (Figure 8). At309

lower amplification efficiencies, amplicon indexing fails entirely, with the biomass correlation approaching the null310

distribution when amplification efficiency fell below 0.35 (median ρ = 0.09). We suggest the rarity of inefficient311

amplicons after 35 cycles – combined with process error associated with PCR (ε , in our simulation) and stochastic312

variability in read-depth – explains this stochasticity.313

Building amplicon indices across different primer sets for the same underlying biological community [65] is a314

way of creating an ensemble index that can better capture biological dynamics than any single primer set can alone315

(Supp. Fig 4).316

4 Discussion317

As genetic-based monitoring and discovery tools grow in popularity for ecological applications, it is increasingly318

important to understand the mechanisms underlying sampling technologies and how these methods affect inferences319

about ecological communities. We use simulations to identify how two researcher-defined processes in particular320

– primer choice and the associated amplification distribution, and the number of PCR cycles – can have dramatic321

consequences for estimates of biodiversity. Additionally, we show how reliable metrics of biomass may be derived322

from metabarcoding surveys. Together our results help to explain the behavior of PCR-based surveys and suggest323

clear avenues for integrating eDNA data more fully into ecological applications.324

Our simulations suggest three principal conclusions broadly relevant to eDNA work:325

1. Traditional ecological diversity metrics – such as richness and the Shannon Index – shift substantially with326

small changes of PCR-based protocols, to the extent that such metrics may not be comparable across methods327

or studies. Taxon-specific primer sets are likely to be an exception to this rule because, with a narrow range of328

target taxa out of the available pool, their results stabilize after a few PCR cycles.329

2. The results of community-wide diversity studies depend even more strongly on the choice of PCR primers.330

Amplification- efficiency explains amplicon abundance to a far greater extent than does underlying biomass331

within a sample.332

3. However, because amplification efficiency is approximately constant for a given taxon and primer set, changes333

in taxon-specific abundance indices reliably and quantitatively track changes in biomass over space or time.334

Primer-taxon pairings with relatively high amplification efficiencies are particularly effective in this regard.335

We discuss these conclusions in turn below, before suggesting best practices for applying them in the field.336
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Exponential Growth: Effect of PCR Cycle Number337

Decades after microbial ecologists embraced PCR-based methods [66], PCR-based surveys have begun to radically338

change the way molecular ecologists work with the visible world around them. In mixed-template applications, PCR339

serves a dual purpose: first, it selects particular DNA fragments of interest; and second, it amplifies these fragments340

for analysis. In the bargain, however, PCR radically distorts the underlying proportions of biomass as a result of341

amplification bias [19].342

Our simulation shows metabarcoding fails to recover the true value of two traditional biodiversity metrics343

after as few as 25 PCR cycles. Importantly, the magnitude of difference between the estimated and true values344

of diversity varies strongly with the distribution of amplification efficiencies, suggesting that results from each345

combination of primer set and target community will vary unpredictably. And because both exponential amplification346

and primer bias obscure proportions of species’ biomass, we note that the absolute values of Shannon Index and347

most other ecological summary statistics – which depend upon species proportions – are likely meaningless in the348

metabarcoding context.349

But measurements of local richness (α diversity) and other diversity statistics are rarely studied for just one350

sample; scientists are often interested on its variation across systems or through an environmental gradient. We find351

recovered α diversity and Shannon Index depend principally on the distribution of amplification efficiencies across352

the taxa and number of PCR cycles; thus if the same analytical techniques are used consistently, the results will353

likely accurately reflect relative patterns of diversity.354

Similarly, we find after the first few PCR cycles, each cycle greatly magnifies the difference between true355

and recovered diversity, such that small differences in protocol strongly affect results. Usually PCR protocols are356

consistent within a project, thus allowing for comparisons between samples processed with a shared protocol, but357

our results underscore the value of consistent analytical technique. This observation also complicates the prospects358

for meta-analysis of eDNA-sequencing studies.359

Amplification Bias: Effect of PCR Efficiency360

Different PCR primer sets result in vastly different suites of eDNA amplicons [12], an effect described more than361

twenty years ago in the microbial context [20]. Our simulations suggest the mechanism for such differences is362

the primer-template interaction, and in particular, the efficiency of amplification: we show – unsurprisingly – that363

different distributions of amplification efficiencies greatly affect estimates of biodiversity. This result makes clear364

that metabarcoding studies are not necessarily comparable across systems.365

Our simulation suggested amplification-efficiency (i.e., primer bias) had a 630-fold greater impact on richness366
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than did the underlying biomass proportion. This result highlights both a strength and a weakness of eDNA work:367

depending upon the primer set, the resulting amplicons may at the same time reflect relatively rare taxa and fail to368

reflect relatively common taxa in a sampled environment.369

Testing Quantitative eDNA Indices370

Primer-template bias largely determines the outcome of metabarcoding studies, however, primer-template interaction371

appears to remain constant across different pools of potential amplicons. As a result, taxon-specific indices372

constructed from multiple samples taken over time or space appear to quantitatively reflect changes in underlying373

biomass. Our “eDNA Index” – which, again, is simply an adaptation of transformations that have long existed in374

ecology – tracks changes in biomass quite closely both in simulations (as here) and in practice (e.g., [4, 59]. Given375

that many survey applications demand a degree of quantification, we view this as an important finding. Nevertheless,376

we note that a quantitative index is not the same thing as counting actual target species. Tying the changes in an377

eDNA index to an actual number of individuals of a species (or kilograms of biomass), for example, will likely378

require calibrating the index against samples of known composition in a field setting.379

Best Practices380

Mindful of the recommendations contained in series of existing review papers on eDNA [67, 68, 69], we offer the381

following suggestions for standardizing eDNA techniques in light of our own findings.382

• To maximize diversity detected with a given primer set, minimize PCR cycles, preferably fewer than 35.383

• Keep PCR protocols strictly consistent across samples you wish to compare.384

• Do not compare absolute values of richness, Shannon Index, or similar metrics across studies.385

• Be specific about a target organismal or ecological group before sampling, in order to define the species386

expected and a denominator for total expected diversity. This may take iteration and experience with a387

particular primer set.388

• For each primer set, estimate the distribution of amplification efficiencies within your target group using389

mock communities or other calibration techniques. This will set an expectation for the fraction of target taxa390

recovered and define amplification bias among the recovered species.391

• Carry out a temporal or spatial series of samples in order to track organismal changes using an index of eDNA392

abundance.393
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5 Conclusion394

The results of metabarcoding studies differ dramatically from those of traditional, non-PCR-based sampling methods395

as a result of the PCR process itself. This exponential process means that 1) small changes in laboratory technique396

can yield large differences in outcomes, 2) PCR-based assays likely act differently on every target species, 3) there397

is consequently no one-to-one correspondence between the number of assigned reads in an eDNA study and the398

abundance of the source organism, and 4) neither might we expect a universally strong correlation in estimates of399

taxon-richness between eDNA and traditional methods.400

Nevertheless, the power of metabarcoding surveys is undeniable: the technique reveals hundreds or thousands401

of taxa in every sample, and can easily distinguish ecological communities among habitats and sampling sites.402

Many practical applications demand some quantification of organisms – for example, fisheries stock assessments, or403

population surveys for endangered species – and so understanding the processes linking amplicon reads to species’404

biomass or counts is particularly relevant for making eDNA a standard source of data for ecological sampling. By405

focusing on the processes by which metabarcoding results arise, we have developed a picture of the specific ways in406

which these might – and might not – be compared to other survey techniques, and in the process, have provided a407

quantitative means of tracking changes in environmental samples.408

We note that our results are consistent with [22] – a draft of which became available at approximately the same409

time as our original manuscript submission – which treats quite similar subject matter from a statistical, rather than410

molecular biological, perspective. Taken together, along with other recent work such as [23] and [21], a common411

understanding of the processes underlying PCR-based studies appears to be coalescing.412
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Figure 1. Distribution of proportional biomass in the three types of ecological communities simulated.
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Figure 2. The distribution of amplification efficiencies for three eDNA use-cases. A: amplifies most taxa, but few
very well or very poorly (symmetrical; likely reflects the performance of broad-spectrum primers such as [44] and
[45] acting upon eukaryotes); B: amplifies few taxa well, most taxa poorly (right-skewed; parameterized based upon
[11]; see main text); C: amplifies a small number of taxa very well, but most not at all (parameterized based upon
the performance of 12s primers [37] in detecting fish assemblages as described in [41]; see main text)). Note that
qPCR primers are a special case of this last distribution.
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color-coded. The underlying biomass distribution is moderately variable (γ = 5, as described in Methods. A:
richness, B: Shannon Index. Loess-smoothed lines are shown to illustrate trends.
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amplification efficiencies (panels), after simulated sequencing with different numbers of PCR cycles (color).
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Figure 5. Richness (A) and Shannon Index (B) by PCR cycles for 100 simulated communities of 1000 taxa each
after 35 PCR cycles, varying amplification efficiency and varying underlying biomass distributions.
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Figure 6. Probability of detection for 1000 simulated taxa after 35 PCR cycles across 100 replicate datasets, as a
function of amplification efficiency. The underlying biomass distributions are shown in different colors, and logistic
best-fit models added for clarity. The distribution of amplification efficiencies was held constant across datasets
(Case A, symmetrical).
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Figure 7. Histograms of Spearman’s rank correlation coefficient (ρ), reflecting the relationships between simulated
biomass and a variety of eDNA-abundance indices, for a set of 25 simulated time-series samples of a community of
1000 taxa. Shading refers to the quartile of log amplicon frequency; more abundant amplicons are shown in darker
shades. Vertical grey lines reflect the median single-time-point ρ for that index vs. biomass. Bright red and dark red
lines indicate medians and modes, respectively, for the time-series indices. Median and mode lines calculated from
the underlying data; binning may make maximum values appear different. Correlations calculated for taxa appearing
in at least five of the 25 timepoints (i.e., 20% incidence) to avoid many rank ties at zero abundance. The null dataset
is the set of correlations between a randomly shuffled amplicon-count matrix and the biomass matrix; this results in
a symmetrical distribution of ρ with a mean of zero. Only positive values of the null distribution are shown.
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Figure 8. Using the eDNA Index, the biomass-index correlation coefficient (ρ) by amplification efficiency for each
amplified taxon. Those taxa with a relative amplification efficiency >= 0.6 have particularly strong correlations
(median ρ = 0.96). As shown by shading, the eDNA Index behaves similarly for species with greater and lesser
proportions of biomass in the community. Simulated biomass varied over two orders of magnitude across taxa;
averaging across time-points narrows this range to a factor of two, and the relative mean biomass expressed here
reflects that smaller range.
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